* 文末有干货下载:《艾美捷-WB常见问题-50问.PDF》
我有一个做蛋白质磷酸化(信号通路)研究的朋友,他说:WB是条不归路,WB难,磷酸化蛋白的WB更难!他曾创造过一个实验室记录,做了200多次磷酸化蛋白,出结果的只有60几次,与理论一致的只有40次不到。他,曾崩溃过...
现实情况确实如此,内源性目的蛋白本身在细胞裂解物中表达丰度不高,而其磷酸化修饰的蛋白含量就更低了!即使用高浓度抗体,延长曝光时间,依旧很难获得理想的效果。大多数市售的WB封闭剂(如牛奶,血清,BSA)虽然可以满足阻断膜上的未反应位点,减少检测过程中非特异性抗体的数量,但它们并不是为了在印迹过程中保护磷蛋白抗原而设计的,本身含有磷酸化蛋白成分,因而并不能为磷酸化WB雪中送炭!
作为专业的生命科学医药原料供应商,艾美捷科技为您推荐:磷酸化抗体专用:封闭液与抗体稀释液(二合一),让悲剧不再发生!
产品 | PhosphoBLOCKER Blocking Reagent PhosphoBlocker封闭液 |
货号 | CBL-AKR-103 |
规格 | 1L |
产品形式 | 50g 干粉混合物 |
溶解配置 | 50g干粉溶解到1L的PBST/TBST溶液中,配制5% PhosphoBLOCKER 溶液 |
封闭液用途 | 使用5% PhosphoBLOCKER 溶液,封闭膜 |
稀释液用途 | 5% PhosphoBLOCKER溶液,可用于稀释一抗和二抗 |
说明书下载 | 点击下载 |
运输条件 | 常温运输 |
保存方法 | PhosphoBLOCKER溶液仅4℃保存1周,不可长期保存 |
注意事项 | 深色颗粒的存在是我们制造过程中的正常现象,不会对产品的性能产生不利影响。如果需要,可以使用标准实验室滤纸过滤PhosphoBLOCKER?溶液,去除颗粒 |
*** 该产品仅用于科研实验.
PhosphoBlocker封闭液特点:
1.与奶粉,血清,BSA相比,更卓越的封闭效果
2.同时,可作为抗体稀释液使用,无需单独购买
3.增强低水平的磷蛋白信号而不增加背景
4.在Western Blot期间保留磷蛋白抗原
5.易于使用的预混合干混合物
PhosphoBlocker效果对比:
Fig. A549细胞裂解液,检测磷酸化-p38蛋白.
Cell也在用的磷酸化抗体专用封闭液:
Orthofer, Michael, et al. "Identification of ALK in Thinness." Cell181.6 (2020): 1246-1262.
【摘要】尽管世界大部分地区都存在同样致肥的环境,但个体对体重增加的易感性存在相当大的差异。尽管许多研究都集中在确定肥胖的遗传易感性,但我们在一个独特的表型爱沙尼亚队列中对代谢健康的瘦个体(全人群 BMI 谱的最低第 6 个百分位数)进行了 GWAS。我们发现间变性淋巴瘤激酶 (ALK) 作为候选瘦基因。在果蝇中,RNAi 介导的 Alk 敲低导致甘油三酯水平降低。在小鼠中,Alk 的基因缺失导致瘦弱的动物对饮食和瘦素突变引起的肥胖具有明显的抵抗力。从机制上讲,我们发现下丘脑神经元中的 ALK 表达通过交感神经控制脂肪组织脂肪分解来控制能量消耗。我们的遗传和机制实验将 ALK 鉴定为瘦身基因,该基因与抵抗体重增加有关。
更多已发表文章:
Chan, T.Y. et al. (2021). TNK1 is a ubiquitin-binding and 14-3-3-regulated kinase that can be targeted to block tumor growth. Nat Commun. 12(1):5337. doi: 10.1038/s41467-021-25622-3.
Ito, S. et al. (2021). Enoxaparin promotes functional recovery after spinal cord injury by antagonizing PTPRσ. Exp Neurol. 340:113679. doi: 10.1016/j.expneurol.2021.113679.
Tsuchiya, M. et al. (2021). Functional analysis of isoflavones using patient-derived human colonic organoids. Biochem Biophys Res Commun. 542:40-47. doi: 10.1016/j.bbrc.2021.01.021.
Shimazaki, R. et al. (2021). Complement factor B regulates cellular senescence and is associated with poor prognosis in pancreatic cancer. Cell Oncol (Dordr). doi: 10.1007/s13402-021-00614-z.
Okada, R. et al. (2021). Low magnetic field promotes recombinant human BMP-2-induced bone formation and influences orientation of trabeculae and bone marrow-derived stromal cells. Bone Rep. doi: 10.1016/j.bonr.2021.100757.
Gong, Y. et al. (2020). Identification of PTPRσ-interacting proteins by proximity-labeling assay. J Biochem. doi: 10.1093/jb/mvaa141.
Kushioka, J. et al. (2020). A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res. doi: 10.1038/s41413-020-00115-z.
Attili, I. et al. (2020). SRC and PIM1 as potential co-targets to overcome resistance in MET deregulated non-small cell lung cancer. Transl Lung Cancer Res. 9(5):1810-1821. doi: 10.21037/tlcr-20-681.
Kushioka, J. et al. (2020). The small compound, TD-198946, protects against intervertebral degeneration by enhancing glycosaminoglycan synthesis in nucleus pulposus cells. Sci Rep. 10(1):14190. doi: 10.1038/s41598-020-71193-6.
Orthofer, M. et al. (2020). Identification of ALK in Thinness. Cell. 181(6):1246-1262.e22. doi: 10.1016/j.cell.2020.04.034.
Osrodek, M. et al. (2020). Insulin Reduces the Efficacy of Vemurafenib and Trametinib in Melanoma Cells. Cancer Manag Res. 12:7231-7250. doi: 10.2147/CMAR.S263767.
Chabloz, A. et al. (2020). Salmonella-based platform for efficient delivery of functional binding proteins to the cytosol. Commun Biol. 3(1):342. doi: 10.1038/s42003-020-1072-4.
Williams, J.J.L. et al. (2020). Investigation of Novel Cavin-1/Suppressor of Cytokine Signaling 3 (SOCS3) Interactions by Coimmunoprecipitation, Peptide Pull-Down, and Peptide Array Overlay Approaches. Methods Mol Biol. 2169:105-118. doi: 10.1007/978-1-0716-0732-9_10.
Orthofer, M. et al. (2020). Identification of ALK in Thinness. Cell. S0092-8674(20)30497-9. doi: 10.1016/j.cell.2020.04.034.
Zeng, X. et al. (2020). Effect of Low Dose of Berberine on the Radioresistance of Cervical Cancer Cells via a PI3K/HIF-1 Pathway under Nutrient Deprived Conditions. Int J Radiat Biol. doi: 10.1080/09553002.2020.1770358.
Koizumi, R. et al. (2020). Relationship between hemodynamic alteration and sympathetic nerve activation following a single oral dose of cinnamtannin A2. Free Radic Res. doi: 10.1080/10715762.2020.1759805.
Nihei, Y. et al. (2019). Poly-glycine-alanine exacerbates C9orf72 repeat expansion-mediated DNA damage via sequestration of phosphorylated ATM and loss of nuclear hnRNPA3. Acta Neuropathol. doi: 10.1007/s00401-019-02082-0.
Taniguchi, K. et al. (2019). α-Aminoisobutyric acid-containing amphipathic helical peptide-cyclic RGD conjugation as a potential drug delivery system for microRNA replacement therapy in vitro. Mol Pharm. doi: 10.1021/acs.molpharmaceut.9b00680.
Serrano-Regal, M.P. et al. (2019). Oligodendrocyte Differentiation and Myelination Is Potentiated via GABAB Receptor Activation. Neuroscience. pii: S0306-4522(19)30488-9. doi: 10.1016/j.neuroscience.2019.07.014.
Czyz, M. et al. (2019). Plasticity of Drug-Nave and Vemurafenib- or Trametinib-Resistant Melanoma Cells in Execution of Differentiation/Pigmentation Program. Journal of Oncology. 2019:1697913. doi: 10.1155/2019/1697913.
Ashizawa, Y. et al. (2019). OLFM4 Enhances STAT3 Activation and Promotes Tumor Progression by Inhibiting GRIM19 Expression in Human Hepatocellular Carcinoma. Hepatology Communications. doi:10.1002/hep4.1361.
Bertran-Alamillo, J. et al. (2019). AURKB as a target in non-small cell lung cancer with acquired resistance to anti-EGFR therapy. Nat Commun. 10(1):1812. doi: 10.1038/s41467-019-09734-5.
Mielczarek-Lewandowska, A. et al. (2019). 17-Aminogeldanamycin selectively diminishes IRE1α-XBP1s pathway activity and cooperatively induces apoptosis with MEK1/2 and BRAFV600E inhibitors in melanoma cells of different genetic subtypes. Apoptosis. doi: 10.1007/s10495-019-01542-y.
Nakada, S. et al. (2019). Roles of Pin1 as a Key Molecule for EMT Induction by Activation of STAT3 and NF-κB in Human Gallbladder Cancer. Ann Surg Oncol. 26(3):907-917. doi: 10.1245/s10434-018-07132-7.
Hartman, M.L. et al. (2019). Whole-exome sequencing reveals novel genetic variants associated with diverse phenotypes of melanoma cells. Mol Carcinog. 58(4):588-602. doi: 10.1002/mc.22953.
Bemben, M.A. et al. (2019). Isoform-specific cleavage of neuroligin-3 reduces synapse strength. Mol Psychiatry. 24(1):145-160. doi: 10.1038/s41380-018-0242-y.
Ohara, M. et al. (2018). Extracellular Vesicles from Amnion-Derived Mesenchymal Stem Cells Ameliorate Hepatic Inflammation and Fibrosis in Rats. Stem Cells Int. 2018:3212643. doi: 10.1155/2018/3212643.
Heishima, K. et al. (2018). Short-Term Administration of Single-Agent Toceranib in Six Cases of Inoperable Massive Canine Hepatocellular Carcinoma. J Am Anim Hosp Assoc. doi: 10.5326/JAAHA-MS-6788.
Rodriguez-Perez, A.I. et al. (2018). Angiotensin Type 1 Receptor Antagonists Protect Against Alpha-Synuclein-Induced Neuroinflammation and Dopaminergic Neuron Death. Neurotherapeutics. 15(4):1063-1081. doi: 10.1007/s13311-018-0646-z.
Palomo-Guerrero, M. et al. (2018). Uridine-5'-Triphosphate Partially Blocks Differentiation Signals and Favors a more Repair State in Cultured rat Schwann Cells. Neuroscience. 372:255-265. doi: 10.1016/j.neuroscience.2018.01.010.
艾美捷-WB常见问题-50问
................................................................................................
作为一家具有高端的技术实力、先进的经营管理水平和完善的市场销售体系的生物高科技企业,总部位于武汉光谷高新技术开发区,服务面向全国。艾美捷科技是集进口试剂、实验室耗材销售、技术服务与合约开发为一体的专业化高科技公司,为用户提供专业的前沿资讯、完备的产品、整合的解决方案,及优质的物流服务。
艾美捷科技与国内外优秀的生物试剂供应商优保持着密切的合作关系,目前已成为众多国际知名品牌的中国总代理或一级代理,主要包括:AmyJet、AATBioquest、Abbexa、Abnova、Agrisera、Anogen、Atlas Antibodies、Biosensis、Biovision、BioVendor、CaissonLabs、Cell Biolabs、Crystal Chem、Cytoskeleton、Demeditec、Duchefa、Epigentek、Equitech-Bio、EXBio、Fitzgerald、GeneCopoeia、HycultBiotech、Icosagen、ImmunoReagents、ImmunoStep、Jackson、LC Laboratories、LifeSensors、LigaTrap、Lumiprobe、Mabtech、Matreya、MyBiosource、NorgenBiotek、Origene、ProImmune、ProSpec、ScyTek、SolisBioDyne、SouthernBiotech、StressMarq、SySy、USBiological、TRC等,可以在短时间内为用户提供专业的前沿资讯、完备的产品及物流服务。
微信扫码在线客服