为了理解基本的生物学原理并开发新的治疗方法,识别生物相互作用网络,即互作组,是十分重要的。近距离标记,特别是光近距离标记,是实现这一目标最有效的方法之一。1) 通过照射光线,会产生短寿命的反应性活性物质探针。这些探针在溶液中扩散并共价结合到附近的生物分子上,从而赋予一个标签。2,3,4,5,6) 例如,已有报道表明,与光反应性催化剂共价连接的抗体可以通过探针的激活来标记抗体结合蛋白周围的微环境。这项技术不需要使用遗传修饰技术。2)近距离标记中使用的探针的标记半径影响着正在绘制的互作组的规模和分辨率。东京化成(TCI)提供具有不同标记半径的商业产品,用于近距离标记。
重氮环丙烷基团,以单线态卡宾为反应性活性物质,对水极为反应。因此,标记时间仅为几分钟,标记半径约为50纳米。6) 相比之下,芳基叠氮基团产生三线态亚硝基作为活性物质,对水的反应性较慢。因此,标记过程大约需要10分钟,并且可以实现50-100纳米的标记半径。6,7,8,9)
此外,东京化成(TCI)还提供双功能光反应性标记剂,这些标记剂可以在重氮环丙烷基团处进行光交联,并且具有炔基基团作为构建块。
艾美捷东京化成(TCI)近距离标记相关产品:
生物素化试剂:
B6572 Biotin-PEG3-Dz
B6585 Biotin-PEG3-PhN?
B6580 Biotin-PEG3-TFPA
没有生物素结构的构建块:
N1200 4-Nitrophenyl [2-[3-[(Prop-2-yn-1-yloxy)methyl]-3H-diazirin-3-yl]ethyl]Carbonate
P2843 2-[3-[(Prop-2-yn-1-yloxy)methyl]-3H-diazirin-3-yl]ethan-1-ol
其它相关产品:
S0966 Streptavidin FITC Conjugate
T3885 Streptavidin R-PE Conjugate
F1243 6-FAM-PEG3-Azide
J0039 JQ-1 Carboxylic Acid
D5887 NHS-SS-Diazirine (=SDAD)
东京化成(TCI)近距离标记文献参考:
1) In Vivo Proximity Labeling for the Detection of Protein–Protein and Protein–RNA Interactions
D. B. Beck, V. Narendra, W. J. Drury 3rd, R. Casey, P. W. Jansen, Z. F. Yuan, B. A. Garcia, M. Vermeulen, R. Bonasio, J. Proteome Res. 2014, 13, 6135.
2) Microenvironment mapping via Dexter energy transfer on immune cells
J. B. Geri, J. V. Oakley, T. Reyes-Robles, T. Wang, S. J. McCarver, C. H. White, F. P. Rodriguez-Rivera, D. L. Jr. Parker, E. C. Hett, O. O. Fadeyi, R. C. Oslund, D. W. C. MacMillan, Science 2020, 367, 1091.
3) Photoproximity Labeling of Sialylated Glycoproteins (GlycoMap) Reveals Sialylation-Dependent Regulation of Ion Transport
C. F. Meyer, C. P. Seath, S. D. Knutson, W. Lu, J. D. Rabinowitz, D. W. C. MacMillan, J. Am. Chem. Soc. 2022, 144, 23633.
4) Tracking chromatin state changes using nanoscale photo-proximity labelling
C. P. Seath, A. J. Burton, X. Sun, G. Lee, R. E. Kleiner, D. W. C. MacMillan, T. W. Muir, Nature 2023, 616, 574.
5) Photoproximity Labeling from Single Catalyst Sites Allows Calibration and Increased Resolution for Carbene Labeling of Protein Partners In Vitro and on Cells
G. B. Thomas, W. W. B. Paul, K. E. Susanna, R. B. James, L. K. Lisa, G. Virginia, K. L. Kevin, A. W. James, ACS Cent. Sci. 2024, 10, 199.
6) Targeted activation in localized protein environments via deep red photoredox catalysis
N. E. S. Tay, K. A. Ryu, J. L. Weber, A. K. Olow, D. C. Cabanero, D. R. Reichman, R. C. Oslund, O. O. Fadeyi, T. Rovis, Nat. Chem. 2023, 15, 101.
7) Radius measurement via super-resolution microscopy enables the development of a variable radii proximity labeling platform
J. V. Oakley, B. F. Buksh, D. F. Fernández, D. G. Oblinsky, C. P. Seath, J. B. Geri, G. D. Scholes, D. W. C. MacMillan, Proc. Natl. Acad. Sci. USA 2022, 119, e2203027119.
8) Photoaffinity labeling in target- and binding-site identification
E. Smith, I. Collins, Future Med. Chem. 2015, 7, 159.
9) Photoactivatable Lipid Probes for Studying Biomembranes by Photoaffinity Labeling
Y. Xia, L. Peng, Chem. Rev. 2013, 113, 7880.
10) Labeling Preferences of Diazirines with Protein Biomolecules
A. V. West, G. Muncipinto, H. Wu, A. C. Huang, M. T. Labenski, L. H. Jones, C. M. Woo, J. Am. Chem. Soc. 2021, 143, 6691.
作为TCI(东京化成)在中国的区域特约合作伙伴,艾美捷科技有限公司将为中国客户提供全面的TCI的产品及服务。
微信扫码在线客服