欢迎您访问武汉艾美捷科技有限公司官方网站!
站点地图 服务热线:400-6800-868
  • 产品
  • 文章

AGENT BRAND

品牌专题

当前位置:首页 > 品牌专题

Relia Tech:抗原亲和纯化LYVE1抗体

发布者:艾美捷科技    发布时间:2022-07-28     
分享到:

LYVE1抗体


LYVE-1(Lymphatic Vessel Endothelial Receptor-1),淋巴管内皮受体1 是白细胞受体CD44的近亲,LYVE-1的推断氨基酸序列显示,它是一个具有322个残基的I型整体膜多肽,与CD44的HA受体有41%的相似性,其胞外结构域为212个残基,包含一个Link模块,即Link蛋白超家族的原型HA结合域。与CD44一样,LYVE-1分子同时结合可溶性和固定化的HA。然而,与CD44不同的是,LYVE-1分子在淋巴管壁的管腔面上与HA共定位,而在血管中则完全没有。LYVE1是淋巴管内皮细胞透明质酸(HA)的主要受体,是区分血管和淋巴管的常用标志物。  

LYVE1抗体


  一般的抗体生产公司通常会使用Protein A/G进行亲和纯化抗体,这样生产的抗体亲和力和纯度很难达到理想的高度。作为专业的生命科学医药原料和解决方案供应商,艾美捷科技为您推荐德国,Relia Tech荣誉出品:抗原亲和纯化的,LYVE1抗体,Nature, Cell都在用! 

LYVE1抗体


产品名称Rabbit Anti-Human Lyve-1Rabbit Anti-Mouse Lyve-1
特异性人 (不与Mouse交叉反应)
货号102-PA50AG103-PA50AG
发表文献31篇76篇
说明书点击下载点击下载
应用类型WB, IHC (P, F), IF,FCWB, IHC (C), IF, FC
免疫原重组人sLYVE-1(Ser24-Gly232)重组小鼠sLYVE-1(Ala24-Gly228)
纯化方式抗原亲和纯化法
产品形式50ug冻干粉(仅含PBS盐);建议加无菌水重溶至0.1 - 1 mg/ml.
保存条件冻干粉抗体在 -20℃保存 2 年。无菌复溶后,抗体可在 2-8℃下稳定长达 6 个月。冷冻等分试样在 -20℃下可稳定保存至少 6个月。对于冷冻等分试样,建议添加载体蛋白或 50% 甘油。

* 以上产品仅限科研使用,不得用于人体或医疗。 


人Lyve-1抗体(102-PA50AG)文章结果共赏:


人Lyve-1抗体

来自《Nature》Rantakari, Pia et al. "Fetal liver endothelium regulates the seeding of tissue-resident macrophages". Nature vol. 538,7625 (2016): 392-396.  


小鼠Lyve-1抗体(103-PA50AG)文章结果共赏:


小鼠Lyve-1抗体

来自《Cell》 Okabe, Keisuke, et al. "Neurons limit angiogenesis by titrating VEGF in retina." Cell 159.3 (2014): 584-596.   


 【更多Lyve-1产品发表文章】


  1. Tongue immune compartment analysis reveals spatial macrophage heterogeneity. E. M. Lyras et al., eLife. 2022; 11: e77490.

  2. Caspase‐8 in endothelial cells maintains gut homeostasis and prevents small bowel inflammation in mice. N. Tisch et al., EMBO Mol Med. 2022 Jun; 14(6): e14121.

  3. Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. A. S. Mirchandani et al., Nat Immunol. 2022; 23(6): 927–939.

  4. An inducible Cldn11-CreERT2 mouse line for selective targeting of lymphatic valves. H. Orts?ter et al., genesis Volume 59, Issue 7-8

  5. Modeling  high-grade  serous  ovarian  carcinoma  using  a  combination  of in vivo  fallopian tube electroporation and CRISPR-Cas9-mediated genome editing. K. Teng et al., Cancer Res. 2021 Jul 23; canres.1518.2020.

  6. The Therapeutic Effect of Second Near-Infrared Absorbing Gold Nanorods on Metastatic Lymph Nodes via Lymphatic Delivery System. A. O. Oladipo et al., Pharmaceutics. 2021 Sep; 13(9): 1359.

  7. Canonical NF-κB signaling maintains corneal epithelial integrity and prevents corneal aging via retinoic acid. Qian Yu et al., eLife. 2021; 10: e67315.

  8. Study of the physicochemical properties of drugs suitable for administration using a lymphatic drug delivery system. R. Fukumura et al., Cancer Sci. 2021 May; 112(5): 1735–1745.

  9. Apelin promotes blood and lymph vessel formation and the growth of melanoma lung metastasis. J. Berta et al., Sci Rep. 2021; 11: 5798.

  10. Blood and lymphatic systems are segregated by the FLCN tumor suppressor. Ikue Tai-Nagara et al., Nat Commun. 2020; 11: 6314.

  11. Lymphatic and Immune Cell Cross-Talk Regulates Cardiac Recovery After Experimental Myocardial Infarction. M. Houssari et al., Arterioscler Thromb Vasc Biol. 2020 May 14;ATVBAHA120314370.

  12. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. E. Engelbrecht et al., eLife. 2020; 9: e52690.

  13. Tamoxifen-independent recombination of reporter genes limits lineage tracing and mosaic analysis using CreERT2 lines. A. ?lvarez-Aznar et al., Transgenic Res. 2020; 29(1): 53–68.

  14. Embryonic FAP+ lymphoid tissue organizer cells generate the reticular network of adult lymph nodes. Denton AE et al., Cells. 2019 Sep 6;8(9).

  15. Transmembrane protein 215 promotes angiogenesis by maintaining endothelial cell survival. Liu Y. et al., J Cell Physiol. 2019 Jun; 234(6): 9525–9534.

  16. Non-canonical WNT-signaling controls differentiation of lymphatics and extension lymphangiogenesis via RAC and JNK signaling. Lutze G. et al., Sci Rep. 2019 Mar 18;9(1):4739.

  17. Absence of MHC-II expression by lymph node stromal cells results in autoimmunity. Dubrot J. et al., Life Sci Alliance. 2018 Dec 17;1(6):e201800164.

  18. PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Winkler F. et al., Sci Rep. 2018 Dec 4;8(1):17582.

  19. Brief Exposure of Skin to Near-Infrared Laser Modulates Mast Cell Function and Augments the Immune Response. Y. Kimizuka et al., J Immunol. 2018 Dec 15;201(12):3587-3603.

  20. Downregulation of VEGFR3 signaling alters cardiac lymphatic vessel organization and leads to a higher mortality after acute myocardial infarction. Vuorio T. et al., Sci Rep. 2018 Nov 12;8(1):16709.

  21. Characterization of a B16-F10 melanoma model locally implanted into the ear pinnae of C57BL/6 mice. Potez M. et al., PLoS One. 2018 Nov 5;13(11):e0206693.

  22. Endothelial cell fitness dictates the source of regenerating liver vasculature. Singhal M. et al., J Exp Med. 2018 Oct 1;215(10):2497-2508.

  23. Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and β1-integrin activation. Pekkonen P. et al., Elife. 2018 May 1;7. pii: e32490.

  24. Heterogeneity in VEGFR3 levels drives lymphatic vessel hyperplasia through cell-autonomous and non-cell-autonomous mechanisms. Y. Zhang et al., Nat Commun. 2018; 9: 1296.

  25. Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. M. Frye et al., Nat Commun. 2018 Apr 17;9(1):1511.

  26. PROX1 is a transcriptional regulator of MMP14. Gramolelli S. et al., Sci Rep. 2018 Jun 22;8(1):9531.

  27. T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. T. Manzo et al., Cancer Res January 31 2017 77 (3) 658-671

  28. Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. T. Schomber et al., Cancer Res. 2007 Nov 15;67(22):10840-8

  29. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. A. T. Boutin et al., Genes Dev. 2017 Feb 15; 31(4): 370–382.

  30. Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. O. Barreiro et al., eLife. 2016; 5: e15251.

  31. Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. P.-S. Koch et al., Blood. 2017 Jan 26; 129(4): 415–419.

  32. The lymphatic vascular system of the mouse head. M. Lohrberg and J. Wilting, Cell Tissue Res. 2016; 366(3): 667–677.

  33. Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2. M. Taher et al., FASEB J. 2016 Jul; 30(7): 2490–2499.

  34. EPHB4 kinase–inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. S. Martin-Almedina et al., J Clin Invest. 2016 Aug 1; 126(8): 3080–3088.

  35. Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. I. Iftakhar-E-Khuda et al., Proc Natl Acad Sci U S A. 2016 Sep 20; 113(38): 10643–10648.

  36. Medicinal facilities to B16F10 melanoma cells for distant metastasis control with a supramolecular complex by DEAE-dextran-MMA copolymer/paclitaxel. Eshita Y. et al., Drug Deliv Transl Res. 2015 Feb;5(1):38-50.

  37. A Novel Treatment Method for Lymph Node Metastasis Using a Lymphatic Drug Delivery System with Nano/Microbubbles and Ultrasound. Shigeki Kato et al., J Cancer. 2015; 6(12): 1282–1294.

  38. An Inducible Hepatocellular Carcinoma Model for Preclinical Evaluation of Antiangiogenic Therapy in Adult Mice. A. Runge et al., Cancer Res. 2014 Aug 1;74(15):4157-69

  39. Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling for their tumor-supporting properties. M. Augsten et al., Cancer Res. 2014 Jun 1;74(11):2999-3010

  40. The effect of podoplanin inhibition on lymphangiogenesis under pathological conditions. Maruyama Y et al., Invest Ophthalmol Vis Sci. 2014 Jul 1;55(8):4813-22.

  41. Angiopoietin-1 is regulated by miR-204 and contributes to corneal neovascularization in KLEIP-deficient mice. Kather JN et al., Invest Ophthalmol Vis Sci. 2014 Jun 10;55(7):4295-303.

  42. Endothelial, but not smooth muscle, peroxisome proliferator-activated receptor β/δ regulates vascular permeability and anaphylaxis. Wawrzyniak M et al., J Allergy Clin Immunol. 2015 Jun;135(6):1625-35.e5. Epub 2014 Dec 31.

  43. Steady-State Antigen Scavenging, Cross-Presentation, and CD8+ T Cell Priming: A New Role for Lymphatic Endothelial Cells. S. Hirosue et al., J Immunol. 2014 Jun 1; 192(11): 5002–5011.

  44. Apelin promotes lymphangiogenesis and lymph node metastasis. J. Berta et al., Oncotarget. 2014 Jun; 5(12): 4426–4437.

  45. Tumor-Derived Interleukin-1 Promotes Lymphangiogenesis and Lymph Node Metastasis through M2-Type Macrophages. Kosuke Watari et al., PLoS One. 2014; 9(6): e99568.

  46. Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. W. W. Kilarski et al., Angiogenesis. 2014; 17(2): 347–357.

  47. Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model. Quagliata L. et al., Clin Exp Metastasis. 2014 Mar;31(3):351-65.

  48. TGFβ signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin. J. M. James et al., Development. 2013 Sep 15; 140(18): 3903–3914.

  49. Lymphatic drainage pathways from the cervix uteri: implications for radical hysterectomy? Kraima AC et al., Gynecol Oncol. 2014 Jan;132(1):107-13.

  50. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. H. Wiig et al., J Clin Invest. 2013 Jul 1; 123(7): 2803–2815.

  51. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Lund AW et al., Cell Rep. 2012 Mar 29;1(3):191-9.

  52. Discontinuous LYVE-1 expression in corneal limbal lymphatics: dual function as microvalves and immunological hot spots. S. Nakao et al., FASEB J. 2012 Feb; 26(2): 808–817.

  53. Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. S. Lutter et al., J Cell Biol. 2012 Jun 11; 197(6): 837–849.

  54. miRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection. S. Zuklys et al., J Immunol. 2012 Oct 15;189(8): 3894–3904.

  55. Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo. H. Stedt et al., Mol Ther Nucleic Acids. 2012 May; 1(5): e19.

  56. VAP-1–Mediated M2 Macrophage Infiltration Underlies IL-1β– but Not VEGF-A–Induced Lymph- and Angiogenesis. S. Nakao et al., Am J Pathol. 2011 Apr; 178(4): 1913–1921.

  57. Different role of CD73 in leukocyte trafficking via blood and lymph vessels. ?lgars A et al., Blood. 2011 Apr 21;117(16):4387-93.

  58. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Yuji Okuno et al., Blood. 2011 May 12; 117(19): 5264–5272.

  59. Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph- and angiogenesis. S. Nakao et al., Blood. 2011 Jan 20; 117(3): 1081–1090.

  60. Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid human ovarian cancer in mice. H. Sallinen et al., Cancer Gene Ther. 2011 Feb;18(2):100-9.

  61. Integrin-α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. E. Bazigou et al., Dev Cell. 2009 Aug; 17-2: 175–186.

  62. Lymphangiogenesis and angiogenesis: concurrence and/or dependence? Studies in inbred mouse strains. S. Nakao et al., FASEB J. 2010 Feb; 24(2): 504–513.

  63. Modulating metastasis by a lymphangiogenic switch in prostate cancer. E. Brakenhielm et al., Int J Cancer. 2007 Nov 15; 121(10): 2153–2161.

  64. Essential in Vivo Roles of the C-type Lectin Receptor CLEC-2: EMBRYONIC/NEONATAL LETHALITY OF CLEC-2-DEFICIENT MICE BY BLOOD/LYMPHATIC MISCONNECTIONS AND IMPAIRED THROMBUS FORMATION OF CLEC-2-DEFICIENT PLATELETS. Katsue Suzuki-Inoue et al., J Biol Chem. 2010 Aug 6; 285(32): 24494–24507.

  65. Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. S. Hassane et al., Lab Invest. 2011 Jan;91(1):24-32.

  66. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. S. J. Priceman et al., Blood. 2010 Feb 18; 115(7): 1461–1471.

  67. Effects of VEGFR-3 phosphorylation inhibitor on lymph node metastasis in an orthotopic diffuse-type gastric carcinoma model. M. Yashiro et al.,    Br J Cancer. 2009 Oct 6; 101(7): 1100–1106.

  68. Endothelin-1 stimulates lymphatic endothelial cells and lymphatic vessels to grow and invade. F. Spinella et al., Cancer Res. 2009 Mar 15;69(6):2669-76

  69. Suppression of Prostate Cancer Nodal and Systemic Metastasis by Blockade of the Lymphangiogenic Axis. J. B. Burton et al., Cancer Res. 2008 Oct 1; 68(19): 7828–7837.

  70. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. Yoshiaki Kubota et al., J Exp Med. 2009 May 11; 206(5): 1089–1102.

  71. Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. A.A. Tomei et al., J Immunol. 2009 Oct 1;183(7):4273-83.

  72. Vascular endothelial growth factor-D transgenic mice show enhanced blood capillary density, improved postischemic muscle regeneration, and increased susceptibility to tumor formation. A.M. K?rkk?inen et al., Blood. 2009 Apr 30;113(18):4468-75.

  73. Atu027, a Liposomal Small Interfering RNA Formulation Targeting Protein Kinase N3, Inhibits Cancer Progression. M. Aleku et al., Cancer Res. 2008 Dec 1;68(23):9788-98

  74. Antiangiogenic Gene Therapy With Soluble VEGFR-1, -2, and -3 Reduces the Growth of Solid Human Ovarian Carcinoma in Mice. H. Sallinen et al., Mol Ther. 2009 Feb; 17(2): 278–284.

  75. Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. J. B. Burton et al., Nat Med. 2008 Aug; 14(8):882–888.

  76. Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. F. Niessen et al., Nature. 2008 Apr 3;452(7187):654-8.

  77. Novel Blood Vascular Endothelial Subtype-Specific Markers in Human Skin Unearthed by Single-Cell Transcriptomic Profiling. Y. He et al., Cells. 2022 Apr; 11(7): 1111.

  78. Stage I–IV Colorectal Cancer Prognosis Can Be Predicted by Type and Number of Intratumoral Macrophages and CLEVER-1+ Vessel Density. A. ?lgars et al., Cancers (Basel). 2021 Dec; 13(23): 5988.

  79. Upregulation of VCAM-1 in lymphatic collectors supports dendritic cell entry and rapid migration to lymph nodes in inflammation. J. Arasa et al., J Exp Med. 2021 Jul 5; 218(7): e20201413.

  80. Absence of lymphatic vessels in term placenta. J. Becker et al., BMC Pregnancy Childbirth. 2020; 20: 380.

  81. Engineering Blood and Lymphatic Microvascular Networks in Fibrin Matrices. L. Knezevic et al., Front Bioeng Biotechnol. 2017; 5: 25.

  82. TGFβ counteracts LYVE-1-mediated induction of lymphangiogenesis by small hyaluronan oligosaccharides. Bauer J. et al., J Mol Med (Berl). 2018 Feb;96(2):199-209.

  83. ELM: A New, Simple, and Economic Assay to Measure Motility of Lymphatic Endothelial Cells. F. Torri et al., Res Biol. 2017 Mar 1; 15(1): 39–44.

  84. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Rantakari P. et al., Nature. 2016 Oct 20;538(7625):392-396.

  85. Orbital angiogenesis and lymphangiogenesis in thyroid eye disease: an analysis of vascular growth factors with clinical correlation. L. L. Wong et al., Ophthalmology. 2 16 Sep; 123(9): 2028–2036.

  86. Morphological and Molecular Characterization of Human Dermal Lymphatic Collectors. V. Hasselhof et al., PLoS One. 2016; 11(10): e0164964.

  87. Understanding Lymphatic Drainage Pathways of the Ovaries to Predict Sites for Sentinel Nodes in Ovarian Cancer. M. Kleppe et al., Int J Gynecol Cancer. 2015 Oct; 25(8): 1405–1414.

  88. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into lymph nodes. Rantakari P. et al., Nat Immunol. 2015 Apr;16(4):386-96.

  89. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis.    M-F Pang et al., Oncogene. 2016 Feb 11; 35(6): 748–760.

  90. Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Shin-Jeong Lee et al., Sci Rep. 2015; 5: 11019.

  91. Adhesion of Pancreatic Cancer Cells in a Liver-Microvasculature Mimicking Coculture Correlates with Their Propensity to Form Liver-Specific Metastasis In Vivo. M. Mahfuz Chowdhury et al., Biomed Res Int. 2014; 2014: 241571.

  92. Arterial wall lymphangiogenesis is increased in the human iliac atherosclerotic arteries: involvement of CCR7 receptor. Grzegorek I. et al., Lymphat Res Biol. 2014 Dec;12(4):222-31.

  93. Lymphangiogenesis and angiogenesis during human fetal pancreas development. M. S. Roost et al., Vasc Cell. 2014; 6: 22.

  94. Lack of Lymphatics and Lymph Node–Mediated Immunity in Choroidal Neovascularization. S. Nakao et al., Invest Ophthalmol Vis Sci. 2013 Jun; 54(6): 3830–3836.

  95. Plasticity of Blood- and Lymphatic Endothelial Cells and Marker Identification. J. Keuschnigg et al., PLoS One. 2013; 8(9): e74293.

  96. High density of peritumoral lymphatic vessels measured by D2-40/podoplanin and LYVE-1 expression in gastric cancer patients: an excellent prognostic indicator or a false friend? J. Rudno-Rudzinska et al., Gastric Cancer. 2013; 16(4): 513–520.

  97. Increased lymphatic vessel density and lymphangiogenesis in inflammatory bowel disease. Rahier JF et al., Aliment Pharmacol Ther. 2011 Sep;34(5):533-43.

  98. An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells. J. Kang et al., Blood. 2010 Jul 8; 116(1): 140–150.

  99. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Smith NR et al., Clin Cancer Res. 2010 Jul 15;16(14):3548-61.

  100. Thymus cell antigen 1 (Thy1, CD90) is expressed by lymphatic vessels and mediates cell adhesion to lymphatic endothelium. G. Jurisic et al., Exp Cell Res. 2010 Oct 15; 316(17): 2982–2992.

  101. Exercise-induced decline in the density of LYVE-1-positive lymphatic vessels in human skeletal muscle. Gehlert S. et al., Lymphat Res Biol. 2010 Sep;8(3):165-73.

  102. Regeneration of autotransplanted avascular lymph nodes in the rat is improved by platelet-rich plasma. Hadamitzky C et al., J Vasc Res. 2009;46(5):389-96.

  103. Endosialin (Tem1) Is a Marker of Tumor-Associated Myofibroblasts and Tumor Vessel-Associated Mural Cells. S. Christian et al., Am J Pathol. 2008 Feb; 172(2): 486–494.

  104. Altered regulation of Prox1-gene-expression in liver tumors. J. Dudas etal., BMC Cancer. 2008; 8: 92.

  105. Chemokine CCL2 facilitates ICAM-1-mediated interactions of cancer cells and lymphatic endothelial cells in sentinel lymph nodes. Kawai Y. et al., Cancer Sci. 2009 Mar;100(3):419-28.

  106. The lymphatic ring assay: a 3D-culture model of lymphangiogenesis. F. Bruyère et al., Protocol Exchange (2008)

  107. Jugular lymphatic maldevelopment in Turner syndrome and trisomy 21: different anomalies leading to nuchal edema. Bekker MN et al., Reprod Sci. 2008 Apr;15(3):295-304.

 

德国重组蛋白品牌 ReliaTech ,ISO9001认证,低内毒素,90%以上的产品均有现货,每3周发货 ,快行业2周!  

热销:FGF2、a-mLYVE1、VEGF等活性重组蛋白【已发表文章超1000篇】,2800+细胞培养级低内毒素重组蛋白和抗体,专注受体与配体研究,适合用于VEGF靶向药物研发、生物制药原材料。 

https://www.amyjet.com/brand/ReliaTech.shtml 

-----------------------------------------------------------------------

以上所有产品,均仅限于科研用途。不得用于医疗。

----------------------------------------------------------------------- 

 看到这儿,您心动了吗?马上联系小艾吧! 

  • 高品质保障 成熟的生产研发技术
  • 高性价比 价宜质优,性价比高
  • 高效省心 从购买到使用,放心无忧
  • 安全运输 完善的保护措施安全运输

微信扫码在线客服

微信咨询

全国免费技术支持

400-6800-868

在线客服